Argument estimates of certain analytic functions defined by a class of multiplier transformations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation

The purpose of the present paper is to introduce new subclasses of analytic functions and to investigate inclusion properties of these classes, using the principle of subordination. Also inclusion properties of these classes involving the generalized integral operator are obtained. Mathematical Subject Classification: 30C45

متن کامل

Inclusion Properties for Certain Subclasses of Analytic Functions Defined by a Generalized Multiplier Transformation

Using the principle of subordination, we obtain some inclusion properties of certain subclasses of analytic functions defined by a generalized multiplier transformation. Also inclusion properties of these classes involving the generalized integral operator are obtained. Mathematical Subject Classification: 30C45

متن کامل

On Certain Subclasses of Analytic Functions Defined by a Multiplier Transformation with Two Parameters

Let A denote the class of analytic functions with the normalization f(0) = f ′(0) − 1 = 0 in the open unit disk U = {z : |z| < 1}, set f b,λ(z) = z + ∞ ∑ k=2 (k + b 1 + b )n (k + λ− 1)! λ!(k − 1)! z k (n ∈ C, b ∈ C \ Z−, λ > −1; z ∈ U). and define (fn b,λ) (−1) in terms of the Hadamard product f b,λ(z) ∗ (f b,λ)(z) = z (1 − z)μ (μ > 0; z ∈ U). In this paper, the authors introduce several new su...

متن کامل

Results regarding the argument of certain p-valent analytic functions defined by a generalized integral operator

The operator Jm p (λ, )f (z) was studied by Srivastava et al. [3] and Aouf et al. [4]. From (1.2) and (1.3), we observe that J−m p (λ, )f (z) = Im p (λ, )f (z)(m > 0), so the operator Jm p (λ, )f (z) is well-defined for l ≥ 0, l ≥ 0, p Î N and m Î Z = {..., -2, -1,0,1,2,...}. El-Ashwah Journal of Inequalities and Applications 2012, 2012:35 http://www.journalofinequalitiesandapplications.com/con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2003

ISSN: 0895-7177

DOI: 10.1016/s0895-7177(03)80004-3